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The National Academies of Sciences, Engineering, and Medicine issued a report on December 15, 2023,
“Foundational Research Gaps and Future Directions for Digital Twins.” This described the importance of
using biomimetic digital twins and multiomics in research. These were incorporated in the current
analysis of patients with rheumatoid arthritis (RA). Exome sequencing, genotype-phenotype ranking, and
biomimetic digital twin analysis were used to identify five pathogenic and one likely pathogenic DNA
variants in patient samples analyzed, which were absent from controls. The variants identified in these
genes, P2RX7, HTRA2, PTPN22, FLG, (D46, and EIF4G1, play a role in the development of RA. Additionally,
3172 variants of unknown clinical significance (VUSs) were identified in patient samples, which were
absent from controls. All VUSs appeared to be associated with RA. Hidden or dark data were identified
from six genes. These genes, often found in patient samples, included HIF1A, HLA-DOA, PTGER3, HIPK3,
TGFBR3, and HIF1A-AS3. VUSs identified in genes HIF1A, HLA-DOA, PTGER3, and HIPK3 were directly
related to the pathogenesis of RA, whereas VUSs identified in genes TGFBR3 and HIF1A-AS3 were indirectly
related. The current results suggest that biomimetic digital twins and multiomics can provide further
insight into the development of RA. This may also potentially help with the process of reclassifying VUSs.
The reclassification of VUSs will play a critical role in complex molecular diagnostics and drug develop-

ment. (J Mol Diagn 2025, 27: 256—269; https://doi.org/10.1016/j.jmoldx.2024.12.012)

Modeling real-world complexity has long been the goal of
biomedical methods and software, but it persists in being a
major challenge because of the astronomical combinatorial
possibilities of biological systems, which are multidimen-
sional and multiscale. Modeling the interactions within
molecular genomic ecosystems and how they interact with
human biology has long been the driver of biomedical
research and technological advancement.'*

The futility of trying to model real-world complexity by
scaling data volume and processing power has been iden-
tified and communicated for nearly two decades but has not
been adequately assimilated.

Artificial intelligence (Al) and other technologies such as
machine learning (ML), neural networks, and large language

models hold tremendous promise for driving advances in
biomedical research. However, along with their benefits,
they also have limitations.

Within a biomimetic digital twin method, the raw data
undergo no cleansing or normalization. The classification is
driven by expert knowledge graphs. The software models
the complex relationships across diverse small and large
data using the expertise graphs to compute relevance. The
outputs identify all the potential relationship scenarios be-
tween data points. The researchers then review the potential
evidence and draw conclusions. Often, the reports reveal
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hidden or dark data, relationships that were unknown to the
researchers beforehand.

The National Academies of Sciences, Engineering, and
Medicine (NAS) published a Physics of Life Report,” which
concluded, “An important lesson from the long and complex
history of neural networks and Al is that revolutionary
technology can be based on ideas and principles drawn from
an understanding of life, rather than on direct harnessing of
life’s mechanisms or hardware.”* P42

To address these issues and to provide guidance to the
biomedical community, the NAS, sponsored by the NIH, the
National Science Foundation, the Defense Advanced
Research Projects Agency, and the Department of Energy,
began advocating research into the use of biomimetic digital
twin technology to more effectively model multidimen-
sional and multiscale biological complexity.”

On December 15, 2023, the NAS released a 164-page report,
“Foundational Research Gaps and Future Directions for Digital
Twins.”* The report stated: “Across multiple domains of sci-
ence, engineering, and medicine, excitement is growing about
the potential of digital twins to transform scientific research,
industrial practices, and many aspects of daily life. A digital twin
combines computational models with a physical counterpart to
create a system that is dynamically updated through bidirec-
tional data flows as conditions change. Going beyond traditional
simulation and modeling, digital twins could enable improved
precision medicine and healthcare by more clearly under-
standing the pathophysiology of disease. This report identified
the foundational research and resources needed to support the
development of digital twin technologies. The report presents
critical future research priorities and an interdisciplinary
research agenda for the field, including how federal agencies
and researchers across domains can best collaborate.”* P! #

Although this report advocated for the use of Al, ML, and
neural networks in many forms of biomedical research, it
also stated that digital twins can further assist in addressing
the NAS-identified research gaps. This includes the
conclusion that new theories and methods are required to
address the multidimensional, multiscale characteristics of
problems in modeling and advanced analytics in general,
and in biomedicine in particular.

However, digital twins are not designed to think like a
human brain. Biomimetic digital twins are designed to add
human thinking to digital twin technologies and incorporate
that human expertise into analytical computations. Multio-
mics and biomimetic digital twins technology significantly
assists in filling the research gaps identified by the NAS
report for biomedical research.

In harmony with the NAS guidance, Kearns et al’ (2024)
incorporated a biomimetic digital twin ecosystem into
advanced multiomics experimental protocols. It used a
biomimetic knowledge engineering method to generate an
ecosystem of digital twins that implement real-world
reasoning principles and analyzed data that are raw and
in their original state, meaning that no cleansing or
normalization was performed to remove outliers and/or

The Journal of Molecular Diagnostics m jmdjournal.org

Key Points

e To our knowledge, this is the first submitted research article
following the National Academies of Sciences, Engineering, and
Medicine recommendations, released on December 15, 2023,
that digital twins should be incorporated in biomedical research
to close research gaps.

e Herein, biomimetic digital twins were incorporated into a
comprehensive multiomics platform to potentially clarify the
pathogenesis of a complex disorder, rheumatoid arthritis. This
was accomplished by identifying dark or hidden data—complex
relationships that are not visible in bioinformatics platforms—as
either directly or indirectly related to the development of rheu-
matoid arthritis.

e The current results suggest that biomimetic digital twins and a
comprehensive multiomics platform can help in the process of
reclassifying variants of unknown clinical significance (VUSs).

o The reclassification of VUSs would play a critical role in com-
plex diagnostics and drug development.

hide relationships and impacts within data sets. The use of
this method both leveraged and used dark or hidden data
and enabled unexpected discovery. It provided evidence
for a potential biomarker for a less invasive diagnostic for
endometriosis, and identified a potential chromosomal
hotspot associated with the pathogenesis of endometriosis.
Thus, multiomics and biomimetic digital twins can help
researchers more clearly define the molecular mechanism
of disease.

The current study focused on the molecular mechanisms
of rheumatoid arthritis (RA).°® RA is a multifactorial
autoimmune disease of unknown etiology, primarily
affecting the joints; extra-articular manifestations can
occur. RA causes joint inflammation, which in severe cases
may result in permanent joint damage and disability.
Additionally, RA may affect other organs, including the
lungs, heart, blood vessels, skin, and eyes. RA affects
approximately 1 of every 200 adults worldwide and occurs
two to three times more frequently in women than men. It
can affect people of any age, but peak onset is from age 50
to 59 years.

Most epidemiologic studies in RA have been conducted in
western countries, showing an RA prevalence in the range of
0.5 to 1.0% in the United States. The cumulative lifetime risk of
developing adult-onset RA has been estimated at 3.6% for
women and 1.7% for men."”

RA has a strong genetic component.'’ Twin studies have
estimated the heritability of RA to be approximately 60%.
This number is observed in anti-cyclic citrullinated peptide
antibody (ACPA)—positive patients. These patients have a
more severe subset of RA, with more severe joint destruc-
tion and a higher mortality rate. ACPA positivity is also
associated with older age, female sex, smoking, joint com-
plaints, and first-degree relatives with RA.
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The disease concordance of identical twins is only 12% to
15%, indicating that environmental factors also play an
important role in susceptibility.

Genotype-phenotype relationships have identified >6000
genes with some potential association to the pathophysi-
ology of RA."' "

Over 100 loci have been identified across genomes
harboring RA susceptibility variants by genome-wide as-
sociation studies, with fine mapping, candidate gene ap-
proaches, and a meta-analysis of genome-wide association
studies involving >100,000 individuals.'*"?

RA is a complex multifactorial disease with both genetic
and environmental risk factors contributing to it, and mul-
tiple risk factors may be required before reaching the
threshold at which RA is triggered.

In this study, exome sequencing, DNA variant
phenotype-driven ranking analysis, biomimetic digital twin
analysis, GeneCards (https://www.genecards.org, accessed
January 2024), and VarElect (LifeMap Sciences, Hong
Kong) were used to identify dark or hidden data
associated with the molecular profile of RA, a complex
multifactorial disorder. It provided additional results
demonstrating  that biomimetic digital twins and
comprehensive multiomics can play a role in the
clarification in the pathophysiology of a complex genetic
disorder. Furthermore, it demonstrated the potential role of
using this platform in identifying variants of unknown
clinical significance (VUSs) potentially associated with the
development of rheumatoid arthritis and suggest a way to
potentially begin to reclassify VUSs as pathogenic, likely
pathogenic, benign, or likely benign.

Materials and Methods

Patient Population

All patient samples analyzed in this study were obtained
from immunodeficiency exome clinical tests ordered by
physicians with a signed informed consent. The patient
ages ranged from 65 to 72 years, 19 were White, 4 were
African American, and 2 were Asian. Thirteen samples
were from females, and 12 were from males. All controls
were from patients aged >60 years, with no diagnosis of
RA or related disorders, and with no identified
comorbidities.

Next-Generation Sequencing

Experimental protocol: whole-exome next-generation
sequencing was performed on each sample to determine the
presence or absence of known pathogenic, or likely patho-
genic, mutations and VUSs associated with RA.
Whole-genome amplified DNA (50 ng) from each sample
was used as input for library preparation (Thermo Fisher
Scientific, Waltham, MA). The library preparation was done
using xGen DNA Library Prep EZ UNI (Integrated DNA
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Technologies, Coralville, IA). The DNA sample underwent
enzymatic preparation to produce fragment sizes of
approximately 200 bp. This was followed by ligation using
full-length adapters. The samples then underwent an
AMPpure bead (Beckman Coulter, Sharon, IL) cleanup and
were washed. A PCR amplification was then performed,
followed by a second AMPure bead cleanup. The samples
were then sized (4200 TapeStation; Agilent Technologies,
Santa Clara, CA) and quantitated (Qubit 4 Fluorometer;
Fisher Scientific, Waltham, MA). Samples were pooled with
no more than 12 samples per pool, and a 16-hour hybridi-
zation was preformed using xGen Exome Hyb Panel v2
(Integrated DNA Technologies).

A bead capture (Bait-Capture) and a set of post-
hybridization washes were performed using an xGen Hy-
bridization and Wash Kit (Integrated DNA Technologies).
A post-hybridization amplification was then done using
xGen Library Amplification Primers (Integrated DNA
Technologies), followed by an AMPure bead cleanup. The
pools were sized and quantitated once more. The pools were
normalized and pooled into a single pool.

The pooled libraries were then denatured and loaded onto
a NovaSeq 6000 (Illumina, San Diego, CA) and sequenced
using a NovaSeq 6000 S1 Reagent Kit v1.5 (Illumina). The
libraries bind to grafted oligos on the flow cell and then
hybridize and bridge on their specific oligo and undergo
multiple cycles of amplification. This forms clusters using
an ExAmp technology. Then, the clusters undergo two-
channel sequencing by synthesis chemistry.

Validation

The experimental protocol included a NovaSeq 6000 for short-
read next-generation sequencing, the Illumina Dragen Germ-
line pathway for secondary analysis, and Qiagen’s Clinical
Insight (Redwood City, CA) for tertiary analysis. First, whole-
exome sequencing was comprehensively validated against
National Institute of Standards and Technology reference/
validation samples. TAccuracy, sensitivity, specificity, positive
predictive value, negative predictive value, positive percentage
agreement, and precision (inter- and intra-) assays were per-
formed to complete the validation process.

The authors also participate in the College of Pathologists
surveys. Blinded DNA sequencing to previously known
samples was also performed to ensure the accuracy of the
results.

Required passing quality control metrics for each sample
sequenced were as follows: Total_input_reads: >49,000,000;
Number_of_duplicate_marked_reads_pct: <10%; Uniformity
_of_coverage_pct_gt_02mean_over_target_region: >95%;
Average_alignment_coverage_over_target_region: >85%;
and Pct_of_target_region_with_coverage_20x_inf: >95%.

Short-read sequencing (approximately 350 bp) was the
best modality to use for this study as long-range
sequencing (approximately 3000 to 5000 bp) is more
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relevant to identify structural variants. Furthermore, the
current standard of care for clinical next-generation
sequencing testing uses short-read sequencing.

Secondary Analysis

On sequencing, the Dragen Platform (Illumina) was used for
secondary analysis. This enrichment is an accurate and
efficient end-to-end (FASTQ to VCF) secondary analysis
solution for whole-exome data. This app takes input files in
FASTQ, BAM, and CRAM format. Files may be decom-
pressed, go through map/align/sort, and go through variant
calling using Qiagen’s Clinical Insight.

Tertiary Analysis

For tertiary analysis, all variants and all phenotype ranked
variants were downloaded using Qiagen’s Clinical Insight
(Qiagen Digital Insights). Qiagen’s Clinical Insights Inter-
pret is a clinical decision support software that accelerates
variant interpretation and reporting of Mendelian, heredi-
tary, rare disease, complex disorders, and oncology next-
generation sequencing tests at scale. Qiagen’s Clinical In-
sights Interpret is powered by Qiagen Knowledge Base, the
biggest manual curated knowledgebase, with insights about
symptoms, phenotypes, and gene-disease associations,
biomedical databases, such as Human Gene Mutation
Database and Catalogue of Somatic Mutations in Cancer,
medical guidelines, and a wide variety of different bibli-
ography content sources that are clinically relevant and are
manually curated daily. Qiagen’s Clinical Insight Interpret
computes and combines all the relevant information related
to the variant of interest and distributes the relevant bio-
logical context. Qiagen’s Clinical Insight also offers the
possibility of phenotype-driven analysis, where the user can
submit phenotypes or symptoms of suspected disease or
disease under investigation along with the .vcf file of the
sample. On the basis of this information, Qiagen’s Clinical
Insights Interpret phenotype-driven ranking algorithm esti-
mates and ranks genomic variants based on the probability
of being the causative one for the disease, symptoms, or the
phenotypes under investigation by taking into account
multiple variables, such as zygosity, predicted pathogenicity
of variant, mode of inheritance, Combined Annotation
Dependent Depletion (CADD) score, and more variant-
centric variables, as well as all the curated molecular in-
sights from the Qiagen knowledge base.

Comparison Between Standard Artificial Intelligence
and a Biomimetic Digital Twin Analysis

Biomimetic Digital Twin Architecture Overview

e Human expertise graphs
e Model and ecosystem design
e Real-world data approach
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e Dark data discovery
e Transparency

Human Expertise Graphs
Experts use qualitative reasoning for problem analysis.
Therefore, the biomimetic digital twin ecosystem must
include a qualitative meta ontology with domains that can
be populated and mapped independently by the subject
matter experts. Here is a high-level example (Figure 1).
Experts map relevant attributes in the provided data
sources to their own qualitative models of the domains or to
industry standard ontologies.

Model and Ecosystem Design

Models are scoped around known behaviors and designed
by imitating (twinning) the understood structures, systems,
and scenarios of the modeled behaviors. Emerging behav-
iors are not predictions, but evidence to be considered by
experts (Figure 2).

Ecosystem Architecture

e Each twin models a discrete component of the analytical
scope of the ecosystem.

e Internal properties and behaviors must be modeled to a
level of sufficient comprehensiveness to enable the re-
actions that are required for the ecosystem to reflect the
real world to the scope of its design.

e Each twin can initiate an interaction with others or
respond as prompted.

e Mitigation of bias is achieved by:

O Independent design of each twin

O Abstract knowledge graphs populated without
defining specific problems or events

O Autonomous interactions between the twins

Real-World Data Approach

A data lake is populated with the required small/wide data
sources, which could be small data sets, such as extracts
from patient records, or outputs of larger systems, such as
bioinformatics platforms. All tables are in their native
schema without normalization or cleansing—real-world
data.

Contextualization is the primary method of interpreting
data and assessing the relevance of evidence to a defined
problem. Big data are more likely to pose challenges rather
than help. A recent article titled “The Limits of Data,” from
the National Academy of Sciences, concluded “Data is
powerful because it’s universal. The cost is context.”
(https://issues.org/limits-of-data-nguyen,  last  accessed
November 1, 2024).

Hidden or Dark Data Discovery

The relevance computation engine leverages the combined
expertise graphs to identify multiscale and multidimensional
relationships across the data sets in the lake. This is an
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Concept
Category

Concepts

Concept
Variants

Figure 1

engineering-level view of dark or hidden data discovery
(Figure 3).

In this case, multifactor correlations between pathogenic
variants (relevant), VUSs (other), and knowledge graphs
populated by the researchers produced the reported findings.

The findings cannot be compared with Al outputs using
the same inputs because standard Al: i) requires large
training data sets; ii) statistically computes predictions rather
than discovering contextual relationships, so they cannot
deliver real-world data but frequently produce hallucina-
tions; and iii) uses black box algorithms that provide no
explanation for deriving the outputs.

Emergent Behaviors

NN N
o

Behavior

Attribute

Modeled Behaviors
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Attributes
Discipline
Domain
Purpose

Attributes
Behavior
Connections
Measures

Attributes
Evidence
Boundaries
Contraindicates

The use of concept categories, concepts, and concept variants to generate human expertise graphs.

Transparency
The biomimetic digital twin ecosystem is NOT a black box
application because:

e The process of computing relevance using expert map-
pings is transparent and does not perform any data
transformation.

e The outputs are not predictions but discovered relation-
ships with the associated evidence.

e The outputs identify the source files and attributes for
each value that is presented as part of the evidence, so that
everything is traceable.

STRUCTURES

Figure 2 The use of systems, structures,
modeled behaviors, and emergent behaviors as a
model and ecosystem design.

Shared attributes
and/or behaviors
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Figure 3

This illustrates hidden specific correlations (dark data) discovered by the biomimetic digital twin engine. The figure illustrates unknown

correlations between factors in disparate data sets. Red text and red line indicate the most prevalent correlations.

e The only variable may be differences in experts’ views on
the significance of the evidence.

Knowledge Engineering Using a Biomimetic Engine

e Each twin models a discrete component of the analytical
scope of the ecosystem.” *'¢~1?

e Internal properties and behaviors must be modeled to a
level of sufficient comprehensiveness to enable the re-
actions that are required for the ecosystem to reflect the
real world to the scope of its design.

e Each twin can initiate an interaction with others or
respond as prompted.

e Mitigation of bias is achieved by:

O Independent design of each twin

O Abstract knowledge graphs populated without
defining specific problems or events

O Autonomous interactions between the twins

This real-world reasoning approach enables the construction
of models that integrate highly diverse elements and infor-
mation sources to enable exploration and discovery to a
scope that traditional information architecture cannot
accommodate.

Systems Thinking and Real-World Reasoning

The NAS also recommends addressing complexity using
systems thinking. Key observations are as follows:

e Bottom-up, mechanistic, linear approaches to under-
standing macro-level behavior are limited when consid-
ering complex systems.

The Journal of Molecular Diagnostics m jmdjournal.org

e Bottom-up, reductionist hypotheses and approaches can
lead to a proliferation of parameters; this challenge can
potentially be addressed by applying top-down, system-
level principles.

e Systems thinking can be used to predict macroscopic
phenomena while bypassing the need to explicitly un-
mask all the quantitative dynamics operating at the
microscopic level.

Although all knowledge engineering efforts seek to
incorporate elements of cognitive science, a key aspect of
this innovation strategy is the driving role of a cognitive
method, which is enabled by biomimetic information ar-
chitectures. Brain processes are systemic and leverage what
neuroscientists label plasticity and sparsity.

o Plasticity is the ability to engage diverse combinations of
neurons and synapses by relevance to the purpose of the
analysis, and to dynamically adapt internal functional
architectures.

e Sparsity is the ability to identify the minimum data
required. The brain can respond to situations that are
simultaneously new on multiple dimensions and can even
categorize one data point.

The neuronal and synaptic architecture of the brain is an
ecosystem, which, according to the NAS, contains 100
trillion neurons. Systemic architecture, plasticity, and spar-
sity are core to biological learning, but are NOT like ML
algorithms. The biomimetic technologies that enable ele-
ments of real-world reasoning are as follows:

e Expertise graphs
e Neural system dynamics digital twins
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Principles of plasticity and sparsity can be imitated by
implementing qualitative expertise graphs and leveraging
them for contextual selection of data and methods from the
in-memory model library. Unlike the deterministic methods
by which traditional application engineering is limited,
systemic modeling requires the coexistence of chaotic and
stochastic model elements, as well as their ability to
dynamically interact with the deterministic elements.

For several years, Al has been looked to as the leading
pathway to genetic understanding and drug development.
However, deep learning and natural language processing
have the three key challenges listed in Hidden or Dark Data
Discovery that are addressed by the biomimetic digital twin
ecosystem method presented in this article.

Multiomics and Biomimetic Digital Twin Ecosystem
Process Tailored for the Analysis

i) Each patient DNA sample and controls underwent
exome sequencing, secondary analysis, and tertiary
analysis (Figure 4). All DNA variants and phenotype
ranked variants were exported to the digital twin
ecosystem’s data lake.

Whole
Exome Electronic
Sequencing Medical
Records

Secondary ‘

ii) Expert knowledge graphs were produced listing all
previously reported DNA variants potentially
associated with the pathophysiology of RA and
were exported to the digital twin ecosystem’s data
lake.

iii) Expert knowledge graphs were produced from each
patient medical record and exported to the digital twin
ecosystem’s data lake.

iv) The digital twin ecosystem’s biomimetic engine then
combined all data downloaded from Clinical Insight,
including in silico calculations, phenotype ranked ref-
erences, and multifactor correlations to the generated
knowledge graphs, and produced a list of gene variants
classified as VUSs potentially associated with the
pathophysiology of RA.

v) The digital twin ecosystem’s biomimetic engine
ranked all VUSs according to the number of times that
they were present in patient samples but absent from
controls.

vi) The digital twin ecosystem’s biomimetic engine’s
output pinpointed six genes, with DNA variants clas-
sified as VUSs, and phenotypes potentially associated
with the pathophysiology of RA.

Knowledge
Graphs

Expert
Knowledge
Graphs

Analysis /

l Data Lake

Tertiary

Analysis l
Knowledge
Engineering
Biomimetic
Digital Twin
Engine
Export All Data
From QCl for
Exome Export All Data
Sequencing From QCl for
Phenotype
Ranked Exome
Sequencing for VErini
RA
Associated with
the
Pathophysiology

of RA

/

The output will identify hidden information data
associated with the pathophysiology of RA.

VUSs Correlated with RA
by Genotype-Phenotype

Analysis make informed decisions about the variant's clinical

Searchable, integrative database that

- provides comprehensive information on all annotated

and predicted human genes. The knowledge base
ically integrates g tric data from ~300

web sources, including genomic, transcriptomic,

pr ic, genetic, clinical, and fur | information.
Comp ive p yp DNA vari prioritizer, to
identify causal DNA variants with /pl pe). This
provides search and scoring ilities, profici ing DNA

variant genes to p
keywords. This output will infer direct as well as indirect links between
genes and phenotypes.

Using a systematic and evidence-based approach,
drawing upon multiple lines of evidence and expertise to

significance, we can potentially begin the process to
reclassify VUSs.

N

Reclassify
VUSs
by Functional
Studies, etc

Figure 4  Multiomics and biomimetic digital twin ecosystem experimental protocol design tailored for the analysis. QCI, Qiagen’s Clinical Insight; RA,

rheumatoid arthritis; VUS, variant of uncertain significance.
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vii) The digital twin output data were uploaded into
GeneCards and VarElect to identify genotype/
phenotype relationships associated with pathophysi-
ology of RA.

a. GeneCards is a searchable, integrative database that
provides comprehensive information on all anno-
tated and predicted human genes. The knowledge-
base automatically integrates gene-centric data from
approximately 200 web sources, including genomic,
transcriptomic, proteomic, genetic, clinical, and
functional information.'"-'?

b. VarElect is a comprehensive phenotype-
dependent DNA variant/gene prioritizer that can
identify causal DNA variants with phenotypes.
VarElect provides search and scoring capabilities,
proficiently matching DNA variant-containing
genes to submitted disease/symptom/phenotype
keywords. The VarElect algorithm infers direct as
well as indirect links between genes and
phenotypes.'’

viii) The digital twin ecosystem’s biomimetic engine does
not make recommendations or draw conclusions, but
rather provides researchers with evidence for consid-
eration that is not visible to standard Al or traditional
bioinformatics platforms or approaches.

Statistical Analysis

Although statistical methods may ordinarily be applied to
the data at this stage in the analysis, this method enables
researchers to discover real-world evidence that they
cannot find using standard research software, including
ML/ALI tools. Assessing the statistical significance of the
evidence, if desired, can be performed, but the calcula-
tions depend on the researcher’s hypotheses in combina-
tion with other available evidence. The use of P values
and associated methods is not without controversy.”’ The
current approach delivers the results and the supporting
evidence, and adding a statistical component to the
outcome could reduce the clarity of the results and
possibly add bias.

Results

Phenotype Ranking of DNA Variants

All DNA variants were downloaded from Qiagen’s Clinical
Insight from each patient’s sample and controls.

The Human Phenotype Ontology term HP:0001370
(https://hpo.jax.org/browse/term/HP:0001370, last accessed
November 1, 2024) was used for RA for phenotype ranking
analysis

Five pathogenic and one likely pathogenic DNA
variant were identified in 8 of 25 patient samples
analyzed. All these mutations are associated with RA.

The Journal of Molecular Diagnostics m jmdjournal.org

These include genes P2RX7, HTRA2, PTPN22 (likely
pathogenic), FLG, CD46, and EIF4GI. No pathogenic or
likely pathogenic DNA variant was identified in any
controls (Table 1).

P2RX7: This gene is a highly expressed receptor on im-
mune cells, triggering the release of cytokines and regulating
autoimmune responses. The synthesis of proinflammatory
cytokines and apoptosis of lymphoid cells can be induced
through P2X7. These results suggest a possible involvement
of P2X7 in the pathogenesis of inflammatory autoimmune
diseases and its role in the development of RA.'' "

HTRA?2: This is a serine peptidase that plays a significant
role in collagen-induced RA. HTRA2 modulates inflamma-
tory responses by controlling TRAF?2 stability in collagen-
induced RA."' "

PTPN22: This gene encodes a member of the nonreceptor
class 4 subfamily of the protein-tyrosine phosphatase fam-
ily. The encoded protein is a lymphoid-specific intracellular
phosphatase that associates with the molecular adapter
protein casitas B-lineage lymphoma (CBL) and may be
involved in regulating CBL function in the T-cell receptor
signaling pathway. DNA variants in this gene may be
associated with a range of autoimmune disorders, including
type 1 diabetes, RA, systemic lupus erythematosus, and
Graves’ disease.''

FLG: Antikeratin antibodies and the antiperinuclear fac-
tor are the most specific serological markers of RA. They
are largely the same autoantibodies that recognizes human
epidermal filaggrins and profilaggrin-related proteins of
buccal epithelial cells (collectively referred to as
profilaggrin).''~"*

CD46: The protein encoded by this gene is a type I
membrane protein and is a regulatory part of the comple-
ment system. CD46 acts as a cofactor for complement factor
I, a serine protease that protects autologous cells against
complement-mediated injury by cleaving C3b and C4b
deposited on host tissue. CD46 acts as a costimulatory
factor for T cells, which induces the differentiation of CD4 ™"
into T-regulatory 1 cells. T-regulatory 1 cells suppress the
immune system.'' "’

EIF4G1: The protein encoded by this gene is a
component of the multisubunit protein complex eukaryotic
translation initiation factor 4F (EIF4F). This complex fa-
cilitates the recruitment of mRNA to the ribosome, which
is a rate-limiting step during the initiation phase of protein
synthesis. The recognition of the mRNA cap and the ATP-
dependent unwinding of 5’-terminal secondary structure
are catalyzed by factors in this complex. The subunit
encoded by this gene is a large scaffolding protein that
contains binding sites for other members of the EIF4F
complex. A domain at its N-terminus can also interact with
the poly(A)-binding protein, which may mediate the
circularization of mRNA during translation. Pathogenic
DNA variants within this gene dysregulate the recruitment
of mRNA to ribosomes and are associated with patho-
physiology of RA.''"*
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Table 1  Gene, Transcript Variants, Protein Variants, Translation Impact, and CADD Scores for Six Genes Related to the Pathophysiology of
Rheumatoid Arthritis
Gene symbol  Transcript variant Protein variant Translation impact ~ CADD score ~ Sample
HIF1A €.2038C>G; ¢.2107C>G; ¢.2035C>G; p.Q680E; p.Q703E; p.Q679E Missense 16.54 10,461
n.213+9755G>C
HIF1A €.35-+2003delT; c.-9delT 3.912 10,430
HIF1A €.1256C>T; ¢.1253C>T; ¢.1325C>T; p.T4191; p.T4191; p.T4421 Missense 20.3 10,444
n.213+12795G>A
HIF1A €.1256C>T; ¢.1253C>T; ¢.1325C>T; p.T4191; p.T4191; p.T4421 Missense 20.3 10,454
n.213+12795G>A
HIF1A €.151G6>C; n.214-3477C>G; ¢.220G6>C; p.V74L; p.V51L; p.V50L Missense 23.4 10,431
€.148G>C
HIF1A c.44delT; c.354-2055delT p.L15* Frameshift 20.2 10,500
HIF1A c.44delT; c.35+4-2055delT p.L15* Frameshift 20.2 10,500
HIF1A-AS3 €.2038C>G; ¢.2107C>G; ¢.2035C>G; p.Q680E; p.Q703E; p.Q679E Missense 16.54 10,461
n.2134-9755G>C
HIF1A-AS3 €.1256C>T; ¢.1253C>T; ¢.1325C>T; p.T4191; p.T4191; p.T4421 Missense 20.3 10,444
n.213+12795G>A
HIF1A-AS3 €.1256C>T; ¢.1253C>T; ¢.1325C>T; p.T4191; p.T4191; p.T4421 Missense 20.3 10,454
n.213+12795G>A
HIF1A-AS3 €.1516>C; n.214-3477C>G; ¢.220G6>C; p.V74L; p.V51L; p.V50L Missense 23.4 10,431
€.148G6>C
HIF1A-AS3 €.2355G>A; n.2134+3929C>T; p.G784G; p.G785G; p.G808G ~ Synonymous <10 10,500
€.2424G>A; ¢.*17G>A; c.2352G>A
HIPK3 €.509G>A p.G170E Missense 20.7 10,447
HIPK3 €.732A>G p.I244M Missense 23.3 10,491
HIPK3 €.3511C>T; ¢.3448C>T p.R1171C; p.R1150C Missense 28.2 10,436
HIPK3 €.1499G>A p.S500N Missense 20.7 10,500
HLA-DOA c.313C>T p.R105C Missense 23.2 10,447
HLA-DOA c.313C>T p.R105C Missense 23.2 10,455
HLA-DOA €.108C>T p.P36P Synonymous <10 10,465
HLA-DOA c.3G>A p.-M1I Start loss 24.7 10,466
PTGER3 n.1316+59326delC; c.1185delC; p.N395fs*9 Frameshift 19.64 10,491
€.*104delC; c.1104+784delC;
n.1343+4-784delC;
€.1077+59326delC; c.*23+784delC
PTGER3 €.1105T>C; ¢.1077459246T>C; p.L369L Synonymous <10 10,446
¢.*24&>C; n.1316+59246T>C;
€.1104+704T7>C; ¢.*23+704T>C;
n.1343+704T>C
PTGER3 n.1317-20553C>T; ¢.1124C>T; c.1078- p.P375L Missense 20.3 10,446
20553C>T; n.1316+37963C>T;
¢.1077437963C>T
PTGER3 n.1316+59326delC; c.1185delC; p.N395fs*9 Frameshift 19.64 10,440
€.*104delC; ¢.1104+784delC;
n.1343+4-784delC;
€.1077+59326delC; c.*23+784delC
TGFBR3 €.2329C>T; c. 2326C>T; n.2813C>T p.P777S; p.P776S Missense 22.8 10,447
TGFBR3 €.2365A>T; n.2852A>T; c.2368A>T p.I790F; p.I789F Missense 29.8 10,451
TGFBR3 €.886G>T; n.1370G>T p.A296S Missense 22.9 10,446
TGFBR3 n.442A>G; c.55A>G p.T19A Missense <10 10,454
TGFBR3 C.464A>G; n.948A>G p.H155R Missense 19.22 10,484

Combining Phenotype Ranking and Biomimetic Digital

Twin Analysis

Next, all
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genotype-phenotype ranked variants
downloaded using specific key terms that described the

were

phenotype of RA using a phenotype-driven ranking filter

(Qiagen’s Clinical Insight Interpret) for each patient sam-
ple. The data were then exported into the biomimetic

digital twin ecosystem for analysis. It identified 3172
VUSs in patient samples analyzed, but not in controls.
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Table 2  Genes Associated with a Direct Relationship to the Pathophysiology of Rheumatoid Arthritis

Gene symbol Description Category
HLA-DOA Major histocompatibility complex, class II, DO o Protein coding
HIF1A Hypoxia-inducible factor 1 subunit o Protein coding
PTGER3 Prostaglandin E receptor 3 Protein coding
HIPK3 Homeodomain-interacting protein kinase 3 Protein coding

Run from VarElect (Copyright © LifeMap Sciences, Inc.), used with permission.

Hidden or dark data for DNA variants were identified in six
genes classified as VUSs in patient samples. The genes
often found in patient samples included HIFIA, HLA-
DOA, PTGER3, HIPK3, TGFBR3, and HIFIA-AS3
(Tables 2 and 3).

HIFIA: This gene encodes the o subunit of transcription
factor hypoxia-inducible factor-1 (HIF-1), which is a het-
erodimer composed of an o and a  subunit. HIF-1 func-
tions as a master regulator of cellular and systemic
homeostatic response to hypoxia by activating transcription
of many genes, including those involved in energy meta-
bolism, angiogenesis, apoptosis, and other genes whose
protein products increase oxygen delivery or facilitate
metabolic adaptation to hypoxia.''~'?

Eighteen VUSs and 12 different proteins within the
HIFIA gene were identified in patients analyzed. All but
one was classified as a missense mutation.

HIA-DOA: HLA-DOA is a protein-coding gene that be-
longs to the human leukocyte antigen (HLA) class II a chain
paralogues. It is a non-classic HLA gene that forms a het-
erodimer with HLA-DOB. The heterodimer, HLA-DOA, is
found in lysosomes in B cells and regulates HLA-
DM—mediated peptide loading on major histocompatibility
complex class II molecules. One study identified an inde-
pendent risk of a synonymous mutation at HLA-DOA on
ACPA-positive RA risk.'' "

Three VUSs and three different proteins were identified
within the HLA-DOA gene in patients analyzed.

One was a missense mutation, one was a Synonymous
variant, and one was a start-loss mutation.

PTGER3: This is a receptor for prostaglandin E2 (PGE2).
The activity of this receptor can couple to both the inhibition
of adenylate cyclase mediated by G(i) proteins and to an
elevation of intracellular calcium. Prostanoid receptors are

activated by the endogenous ligands prostaglandin (PG) D2,
PGE2, PGF2a, PGH2, prostacyclin (PGI2), and throm-
boxane A2. Cyclooxygenase converts arachidonic acid to
PGH2, from which other prostaglandins are synthesized.
PGE2 is induced with IL-1, which also enhances the pro-
duction of parathyroid hormone—related protein. The in-
duction of PGE2 by IL-la appears to be an important
component of the parathyroid hormone—related protein
production of the inflammatory process in synovial tissues
from patients with RA."' "

Twenty-one VUSs were identified that encoded four
different proteins within the PTGER3 gene in patients
analyzed. Two were frameshift variants, one was a synon-
ymous mutation, and one was a missense variant.

HIPK3: This gene enables protein serine/threonine kinase
activity, is involved in mRNA transcription, provides
negative regulation of apoptosis, and aids in protein phos-
phorylation. DNA variants within this gene appear to play a
role in the development of RA.'' "

Five VUSs were identified that encoded five different
proteins within the HIPK3 gene in patients analyzed. All
proteins were classified as missense variants.

TGFBR3: This locus encodes the transforming growth
factor (TGF)-B type III receptor. The encoded receptor is a
membrane proteoglycan that often functions as a coreceptor
with other TGF-f receptor superfamily members. Ectodomain
shedding produces soluble transforming growth factor beta
receptor III (TGFBR3), which may inhibit transforming
growth factor beta protein (TGFB) signaling. Variants with
this gene likely play an indirect role in the pathophysiology of
RA.I 1—13

Twelve VUSs were identified encoding seven proteins
within the TGFBR3 gene in patients analyzed. All variants
were classified as missense mutations.

Table 3  Genes Associated with an Indirect Relationship to the Pathophysiology of Rheumatoid Arthritis

Gene symbol Pathway Description Category
TGFBR3 TNF Tumor necrosis factor Protein coding
TGFBR3 IL-10 IL-10 Protein coding
TGFBR3 IL-6 IL-6 Protein coding
TGFBR3 STAT4 STAT4 Protein coding
TGFBR3 TGFB1 Transforming growth factor-f1 Protein coding
HIF1A-AS3 HIF1A Hypoxia-inducible factor 1 subunit o Protein coding
HIF1A-AS3 SNAPC1 snRNA-activating complex polypeptide 1 Protein coding
HIF1A-AS3 HIF1A-AS2 HIF1A antisense RNA 2 RNA gene

Run from VarElect (Copyright © LifeMap Sciences, Inc.), used with permission.
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HIFIA-AS3: This is an RNA gene and is affiliated with
the long noncoding RNA class of molecules. It appears to
play an indirect role in the development of RA."'' "

Twelve VUSs were identified encoding 11 proteins
within the HIFIA-AS3 gene in patients analyzed. All but
one of these variants were classified as missense mutations.
One mutation was classified as a synonymous variant.

Discussion

This study provided additional evidence to support the use
of incorporating exome sequencing, DNA variant
phenotype-driven ranking filters with knowledge engineer-
ing via the use of biomimetic digital twins, GeneCards, and
VarElect, to provide a greater understanding of the molec-
ular mechanism of disease. Furthermore, these results are
beginning to show the value of multiomics and the use of
digital twins for enhanced molecular diagnostics and the
potential to begin reclassifying VUSs.

The study identified five pathogenic, and one likely
pathogenic, DNA variants in 8 of 25 patient samples
analyzed, but not in 25 control samples.

Clinical molecular laboratory directors face immense
challenges in making decisions on reporting out VUSs. The
number of VUSs identified in exome sequencing can vary
significantly from person to person. Exome sequencing
typically identifies thousands of genetic variants within
exons. These variants include single-nucleotide variants,
small insertions or deletions, and larger structural variants.

Many of these variants may be common in the population
and have been well studied, whereas others may be rare or
previously unreported. VUSs are those genetic variants
whose significance in relation to disease or health outcomes
is not understood. These require further investigation,
functional studies, or larger population studies to determine
their clinical relevance.

The number of VUSs identified in exome sequencing
depends on various factors, including the individual’s ge-
netic background, ethnicity, and family history, and the
specific criteria used to classify variants as VUSs. Addi-
tionally, the depth and accuracy of sequencing, as well as
the bioinformatics tools and databases used for variant
interpretation, can also influence the number of VUSs
identified.

In clinical settings, genetic counselors, geneticists, on-
cologists, and other health care specialties carefully assess
and interpret variants identified through exome sequencing
to provide patients with the most accurate information
regarding their potential health implications. As our under-
standing of the human genome and the functional signifi-
cance of genetic variants continues to evolve, the
interpretation of VUSs will also change over time.

Herein, the genotype-phenotype ranking and a bio-
mimetic digital twin engine were used to identify 3172
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VUSs potentially associated with the pathophysiology of
R A.I 1—13

In addition to the digital twin engine, GeneCards and
VarElect were incorporated into this analysis. Four VUSs
were identified in genes HIFIA, HLA-DOA, PTGER3, and
HIPK3, which are directly related to the development of
RA''"" (Table 2).

The HIFIA gene was found in 7 of 25 patient samples,
HLA-DOA in 4, PTGER3 VUS in 4, and HIPK3 VUS in 4.

All but one of the VUSs identified within the HIFIA gene
were classified as missense mutations. Missense variants are
a genetic alteration in which a single base pair substitution
alters the genetic code in a way that produces an amino acid
that is different from the usual amino acid at that position.
Many missense variants will alter the function of the protein
and be disease causing.

Hyperplasia of synovial fibroblasts, infiltration with in-
flammatory cytokines, and tissue hypoxia are major char-
acteristics of RA.”' IL-33 is an inflammatory cytokine
exacerbating the disease severity of RA. HIF-1a. (HIF-1A)
shows increased expression in RA synovium and could
regulate several inflammatory cytokine productions.
Elevated levels of IL-33 have been shown in synovial fluids
of patients with RA. HIF-1A promotes the activation of the
signaling pathways controlling IL-33 production, particu-
larly the p38 and extracellular signal-regulated kinase
pathways. IL-33, in turn, could induce more HIF-1a
expression, thus forming a HIF-1a/IL-33 regulatory circuit
that would perpetuate the inflammatory process in RA.

Three VUSs identified here encoded three different pro-
teins within the HLA-DOA gene.

One was a missense mutation, one was a synonymous
variant, and one was a start-loss mutation. Start-loss muta-
tions are a point mutation in the ATG start codon of a
transcript that reduces or eliminates protein production. The
elimination or reduction of a functional protein is most
likely a disease-causing DNA variant. A synonymous mu-
tation is a genetic change that alters a gene’s DNA sequence
but not the protein sequence it encodes. Synonymous mu-
tations have traditionally been considered neutral mutations
because they do not change the amino acid that is translated.
However, recent studies suggest that synonymous mutations
can have a significant impact on RNA stability, RNA
folding, translation, and cotranslational protein folding.

Okada et al”* conducted a large-scale major histocompat-
ibility complex fine-mapping analysis of patients with RA in
a Japanese population (6244 RA cases and 23,731 controls)
by using HLA imputation, followed by a multi-ethnic vali-
dation study including east Asian and European populations
(n = 7097 and 23,149, respectively). They identified an
independent risk of a synonymous mutation at HLA-DOA, a
non-classic HLA gene, on ACPA-positive RA risk
P =14 x 10_9), which demonstrated a cis expression
quantitative trait loci effect on HLA-DOA expression.
Transethnic comparison revealed different linkage disequi-
librium patterns in HLA-DOA and HLA-DRBI, explaining the
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observed HLA-DOA variant risk heterogeneity among eth-
nicities, which was most evident in the Japanese population.

Within the PTGER3 gene, VUSs were transcribed into six
different proteins. All these proteins are predicted to be
missense mutations. A missense mutation is a DNA change
that replaces an amino acid in a protein with a different one.
Missense mutations are also known as nonsynonymous
mutations. Some missense mutations have little to no effect
on the protein’s function, whereas others can alter it. For
example, a missense mutation in the caveolin-3 gene is
associated with limb-girdle muscular dystrophy in humans.
Another missense mutation in the PAX3 gene can cause
Klein-Waardenburg syndrome, which includes limb abnor-
malities. A different missense mutation in the same amino
acid residue can cause craniofacial-deafness-hand syn-
drome, a more severe disorder.

The protein encoded by the PTGER3 gene is a member of
the G-protein—coupled receptor family. This protein is one
of four receptors identified for PGE2. This receptor may
have many biological functions, which involve digestion,
nervous system, kidney reabsorption, and uterine contrac-
tion activities. PGE2 is highly expressed in the inflamed
joints of RA, and IL-10 and IL-6 are also abundant. PGE2 is
a well-known activator of the cAMP signaling pathway, and
there is functional cross talk between cAMP signaling and
the Janus kinase (Jak)-STAT signaling pathway.''"”

Five VUSs that produced five proteins were identified
within the HIPK3 gene. All the encoded proteins were
classified as missense mutations.

HIPK3 encodes a homeodomain-interacting protein ki-
nase 3. This enables protein serine/threonine kinase activity.
It is involved in mRNA transcription, cell proliferation,
inflammation, negative regulation of the apoptotic process,
and protein phosphorylation.''~"?

Overexpression of HIPK3 protein in immune cells in
patients with RA has also been reported.”

Two of these VUSs, TGFBR3 and HIFIA-AS3, are
indirectly related to the pathophysiology of RA (Table 3).

The TGFBR3 DNA variant was found in 5 of 25 patient
samples, and the HIF1A-AS3 VUS was also present in 5 of
25 samples.

Twelve VUSs within the TGFBR3 gene encoded seven
different proteins. All these proteins were missense
mutations.

This TGFBR3 locus encodes the TGF-B type III receptor.
The encoded receptor is a membrane proteoglycan that often
functions as a coreceptor with other TGF-B receptor super-
family members. Ectodomain shedding produces soluble
TGFBR3, which may inhibit TGFB signaling. Decreased
expression of this receptor has been observed in various can-
cers. Alternatively spliced transcript variants encoding
different isoforms have been identified for this gene. Diseases
associated with TGFBR3 include familial cerebral saccular
aneurysm and priapism. Among its related pathways are
apoptotic pathways in synovial fibroblasts and negative regu-
lation of fibroblast growth factor receptor 3 signaling.'' "

The Journal of Molecular Diagnostics m jmdjournal.org

TGFBR3 is indirectly related to the development of RA
by interacting with pathways including TNF. This gene
encodes a multifunctional proinflammatory cytokine that
belongs to the tumor necrosis factor (TNF) superfamily.

TGFBR3 also interacts with pathways for IL-6. This gene
encodes a cytokine that functions in inflammation and the
maturation of B cells. The protein is primarily produced at
sites of acute and chronic inflammation, where it is secreted
into the serum and induces a transcriptional inflammatory
response through IL-6 receptor, o.

TGFBR3 plays an indirect role in the development of RA
by interacting with the TGHBI gene pathway. This gene
encodes a secreted ligand of the TGF-B superfamily of
proteins. Ligands of this family bind various TGF- re-
ceptors, leading to recruitment and activation of SMAD
family transcription factors that regulate gene expression.
The encoded preproprotein is proteolytically processed to
generate a latency-associated peptide and a mature peptide
and is found in either a latent form composed of a mature
peptide homodimer, a latency-associated peptide homo-
dimer, and a latent TGF-$ binding protein, or in an active
form, consisting solely of the mature peptide homodimer.
The mature peptide may also form heterodimers with other
TGFB family members. This encoded protein regulates cell
proliferation, differentiation, and growth, and can modulate
expression and activation of other growth factors.

Gene pathways including IL-10 play a role in the path-
ophysiology of RA. TGHBR3 plays an indirect role in the
activation of this pathway. IL-10 encodes a cytokine that is
produced primarily by monocytes and to a lesser extent by
lymphocytes. This cytokine has pleiotropic effects in
immunoregulation and inflammation. It down-regulates the
expression of type 1 helper T cell cytokines, major histo-
compatibility complex class II antigens, and costimulatory
molecules on macrophages. It also enhances B-cell survival,
proliferation, and antibody production. This cytokine can
block NF-kB activity and is involved in the regulation of the
JAK-STAT signaling pathway.

TGFBR?3 also plays an indirect role in the development of
RA by interacting with the Stat-4 pathway. This protein
encoded by this gene is a member of the STAT family of
transcription factors. In response to cytokines and growth
factors, STAT family members are phosphorylated by the
receptor-associated kinases, and then form homodimers or
heterodimers that translocate to the cell nucleus, where they
act as transcription activators. This protein is essential for
mediating responses to IL-12 in lymphocytes and regulating
the differentiation of T helper cells. DNA variants in this
gene may be associated with systemic lupus erythematosus
and RA.

Of the 11 encoded proteins from the HIFA-AS3, all but
one are potentially disease causing and associated with the
pathophysiology of RA.

The HIFIA-AS3 gene is also indirectly related to the
pathophysiology of RA by interacting with pathways that
include the genes HIFIA, SNAPCI, and HIFIA-AS2."' ™"
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The HIFIA gene encodes the o subunit of transcription
factor HIF-1, which is a heterodimer composed of an o and
a B subunit. HIF-1 functions as a master regulator of cellular
and systemic homeostatic response to hypoxia by activating
transcription of many genes, including those involved in
energy metabolism, angiogenesis, apoptosis, and other
genes whose protein products increase oxygen delivery or
facilitate metabolic adaptation to hypoxia. HIFs are tran-
scription factors that are activated in response to decreased
oxygen availability in the cellular environment. Tissue
hypoxia is a major characteristic of RA.

HIFIA-AS3 plays an indirect role in the gene pathway of
SNAPCI. The SNAPCI gene product is a small nuclear
RNA activating complex polypeptide 1. It is predicted to
enable sequence-specific DNA binding activity. It is also
predicted to be involved in snRNA transcription by RNA
polymerase II and snRNA transcription by RNA polymerase
III. The SNAPC1 pathway plays a role in the development
of RA.

HIFIA-AS2 (HIF1A antisense RNA 2) is an RNA gene
and is affiliated with the long noncoding RNA class of
molecules. HIFIA-AS3 potentially plays an indirect role in
the pathophysiology of RA by interacting with the HIFIA-
AS?2 pathway.

The identification of these VUSs does not confirm that
they play a role in the development of RA, but the fact that
most of their encoded proteins are classified as dysfunc-
tional strongly suggests that they are highly likely to play
some role in the pathophysiology of this disorder.

Proving that a VUS is pathogenic or likely pathogenic
involves a comprehensive process of variant interpretation
and assessment. This process typically involves multiple
steps and considerations, including the following:

i) Clinical: The first step is to gather clinical information
about the individual who underwent genetic testing.
This includes the individual’s medical history, family
history, presenting symptoms, and any relevant clinical
findings. Understanding the phenotype associated with
the variant can provide valuable context for its
interpretation.

ii) Classification guidelines: Variants identified through
genetic testing are classified according to established
guidelines, such as those provided by the American
College of Medical Genetics and Genomics or the As-
sociation for Molecular Pathology. Variants are cate-
gorized into five main classes: pathogenic, likely
pathogenic, variants of unknown clinical significance,
likely benign, and benign.

iii) Functional studies: These may be conducted to assess
the impact of the variant on protein function or
expression. These studies can provide direct evidence of
the variant’s pathogenicity by demonstrating its effect
on cellular processes or protein function. In silico ap-
plications can also be used to determine whether a
protein is a functional or a nonfunctional protein.
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iv) Population frequency: Variants that are rare in the
general population are more likely to be pathogenic,
especially if they are found in genes known to be
associated with disease. Population databases, such as
the Exome Aggregation Consortium or the Genome
Aggregation Database, can be used to assess the fre-
quency of the variant in different populations.

v) Segregation: In families with multiple affected in-
dividuals, segregation analysis can be used to determine
whether the variant cosegregates with the disease
phenotype. If the variant is found in all affected family
members but not in unaffected individuals, this provides
strong evidence of its pathogenicity.

vi) In silico predictions: Computational algorithms and
bioinformatics tools can be used to predict the func-
tional impact of a variant based on its location within the
gene and its effect on protein structure. Although these
tools are not definitive proof of pathogenicity, they can
provide supporting evidence.

Proving pathogenicity or likely pathogenicity for a VUS
is often challenging and may require multiple lines of evi-
dence. In many cases, variants initially classified as VUSs
may be reclassified over time as additional evidence be-
comes available. Therefore, ongoing research and updates to
variant databases are essential for improving our under-
standing of genetic variation and its clinical significance.

The reclassification of VUSs is one of the most significant
challenges in genetics today. Recently, there was an
industry-sponsored symposium at the American College of
Medical Genetics and Genomics 2024 annual conference
that discussed the importance of reclassifying VUSs, and
how soon this could be achieved. The symposium
concluded that it would take approximately 10 to 15 years to
accomplish this goal.

One potential limitation of these results is that only 25
patient samples and 25 normal controls were analyzed.
However, a biomimetic digital twin analysis is powerful in
its ability to analyze small, wide data sets and identify
hidden or dark data and unknown biological relationships.
Another potential limitation is that 19 of 25 of our patients
were White. Additional studies are required to discover the
role of ethnicity, if any, in the pathogenesis of RA.

This multiomics and biomimetic digital twins technology
is new, and some believe it is controversial and is in
competition with AI, ML, and neural networks. We believe
that the use of AI, ML, neural networks, and biomimetic
digital twin analysis should all be used together to address
the multidimensional, multiscale characteristics of problems
in modeling and advanced analytics in general, and in
biomedicine in particular.

Traditional information technology twin systems use
statistical machine learning algorithms on normalized large
data sets for classification. Al and ML analyses remove
outliers, normalize data, and usually require a training set.
The development of the training set could potentially
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introduce unintentional bias. The algorithms can find only
what they are programmed to look for, and the outcomes are
predictions that need to be tested.

Some AI and ML users disagree that they require large
data sets for analysis and that they are not a black box. The
US Food and Drug Administration, the NAS, the Massa-
chusetts Institute of Technology, and many sources of Al
expertise call it a black box because there is no way to audit
the statistical computations from token to token that even-
tually lead to a prediction that must be verified externally.
The US Food and Drug Administration also requires
contextual interpretation. Contextualization is achieved by
modeling multidimensional and multiscale relationships.
Computing statistical proximity just cannot do that. It is like
autocorrect, it can only predict the next word, and it only
gets it right if you keep sending the same messages.

The current omics and biomimetic digital twins research
design is not a population-based genetic association case-
control study that requires statistical analyses, including
odds ratios and P values. In this analysis, the data are not
cleansed or normalized, the classification is driven by expert
knowledge graphs, the software models the complex re-
lationships across diverse small and wide data using the
expertise graphs to compute relevance, and the software
outputs all the potential relationship scenarios.

In conclusion, the current results suggest that multiomics
and biomimetic digital twins can provide more insight into
the development of RA. It can also help in the process of
reclassifying VUSs potentially associated with the patho-
physiology of RA. The reclassification of VUSs will play a
critical role in complex molecular diagnostics and drug
development.
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